3x^2+7x=500

Simple and best practice solution for 3x^2+7x=500 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+7x=500 equation:


Simplifying
3x2 + 7x = 500

Reorder the terms:
7x + 3x2 = 500

Solving
7x + 3x2 = 500

Solving for variable 'x'.

Reorder the terms:
-500 + 7x + 3x2 = 500 + -500

Combine like terms: 500 + -500 = 0
-500 + 7x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-166.6666667 + 2.333333333x + x2 = 0

Move the constant term to the right:

Add '166.6666667' to each side of the equation.
-166.6666667 + 2.333333333x + 166.6666667 + x2 = 0 + 166.6666667

Reorder the terms:
-166.6666667 + 166.6666667 + 2.333333333x + x2 = 0 + 166.6666667

Combine like terms: -166.6666667 + 166.6666667 = 0.0000000
0.0000000 + 2.333333333x + x2 = 0 + 166.6666667
2.333333333x + x2 = 0 + 166.6666667

Combine like terms: 0 + 166.6666667 = 166.6666667
2.333333333x + x2 = 166.6666667

The x term is 2.333333333x.  Take half its coefficient (1.166666667).
Square it (1.361111112) and add it to both sides.

Add '1.361111112' to each side of the equation.
2.333333333x + 1.361111112 + x2 = 166.6666667 + 1.361111112

Reorder the terms:
1.361111112 + 2.333333333x + x2 = 166.6666667 + 1.361111112

Combine like terms: 166.6666667 + 1.361111112 = 168.027777812
1.361111112 + 2.333333333x + x2 = 168.027777812

Factor a perfect square on the left side:
(x + 1.166666667)(x + 1.166666667) = 168.027777812

Calculate the square root of the right side: 12.962552905

Break this problem into two subproblems by setting 
(x + 1.166666667) equal to 12.962552905 and -12.962552905.

Subproblem 1

x + 1.166666667 = 12.962552905 Simplifying x + 1.166666667 = 12.962552905 Reorder the terms: 1.166666667 + x = 12.962552905 Solving 1.166666667 + x = 12.962552905 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = 12.962552905 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = 12.962552905 + -1.166666667 x = 12.962552905 + -1.166666667 Combine like terms: 12.962552905 + -1.166666667 = 11.795886238 x = 11.795886238 Simplifying x = 11.795886238

Subproblem 2

x + 1.166666667 = -12.962552905 Simplifying x + 1.166666667 = -12.962552905 Reorder the terms: 1.166666667 + x = -12.962552905 Solving 1.166666667 + x = -12.962552905 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = -12.962552905 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = -12.962552905 + -1.166666667 x = -12.962552905 + -1.166666667 Combine like terms: -12.962552905 + -1.166666667 = -14.129219572 x = -14.129219572 Simplifying x = -14.129219572

Solution

The solution to the problem is based on the solutions from the subproblems. x = {11.795886238, -14.129219572}

See similar equations:

| 4c^2+25= | | 4+2r=4+2r | | 4(x+1)=10x-2 | | 8x-16=-(13+24) | | 11(g+33)=495 | | 3.2x+2.9=-23 | | 0.35=5.6 | | Y=100+4(0) | | 10z+18=78 | | 5(x-z)=10x-20 | | 13-3x=4(x+2) | | 9=x+30 | | 5/2-4/5*4/3 | | 7-23x+16-2x+4=2+19x-20+19x | | X+14.92=31.5 | | (5.7x-0.5)-(4.9x-1.4)= | | 8 = p8– 9 | | 5(1f+2)=9+5f | | 2/3x2/3x2/3x2/3x2/3x2/3 | | Y=100+4(75) | | x=45/63 | | squarex+9+4=12 | | f(x)=tan(2x)+1 | | 0.75=y-0.2*8 | | 7x-12-3x=36 | | -2x-34=9x+57 | | 2(4x-8)=3(5x-7) | | X^2=32/9 | | X+3=10(2x+3)-8 | | 6(2x+4)=28 | | -2x-34=99x+57 | | 3/4=y-1/5x8 |

Equations solver categories